Stability of Contact Lines in Fluids: 2d Stokes Flow
نویسنده
چکیده
In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially fast.
منابع مشابه
Investigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کاملOn imposing dynamic contact-angle boundary conditions for wall-bounded liquid–gas flows
We present an efficient scheme within the phase field framework for imposing dynamic contact angle boundary conditions for wall-bounded flows of two immiscible incompressible fluids with large density ratios. First, we develop an algorithm for imposing the dynamic contact angle boundary conditions to the Cahn–Hilliard equation. Our algorithm consists of two components: (i) we ignore the boundar...
متن کاملTraveling Wave Solutions of 3D Fractionalized MHD Newtonian Fluid in Porous Medium with Heat Transfer
In the present paper, we get exact solutions of Magnetohydrodynamic (MHD) of the fractionalized three-dimensional flow of Newtonian fluid with porous and heat transfer through the traveling wave parameter. The governing equations are produced dependent on established Navier-stokes equations which can be diminished to ordinary differential equation by wave parameter ξ=ax+by+nz+Utα/Γ(α...
متن کاملAn Interface Capturing Method for Two–phase Flow with Moving Contact Lines
This paper presents a conservative numerical method capable of capturing contact line movement for the simulation of capillary dominated flow of two immiscible, incompressible fluids. The interface between the two fluids is represented implicitly by the 0.5–level set of a function varying smoothly from zero to one. The flow of each phase is governed by the incompressible Navier–Stokes equations...
متن کاملLocal Well-posedness of the Contact Line Problem in 2-d Stokes Flow
We consider the evolution of contact lines for viscous fluids in a two-dimensional open-top vessel. The domain is bounded above by a free moving boundary and otherwise by the solid wall of the vessel. The dynamics of the fluid are governed by the incompressible Stokes equations under the influence of gravity, and the interface between fluid and air is under the effect of capillary forces. Here ...
متن کامل